Lecture Two

October 10,2002

- Waves
- Waves Properties
- Wave Motion
- Oscillation
- Electrical Circuit Analogy

What is a wave?

- One definition:
 - A wave is a traveling disturbance that transports energy but not matter.

Examples:

- Sound waves (air moves back & forth)
- Stadium waves (people move up & down)
- Water waves (water moves up & down)
- Light waves (what moves ??)

Types of Waves

- Transverse: The medium oscillates perpendicular to the direction the wave is moving.
 - Water (more or less)
 - Guitar String
- Longitudinal: The medium oscillates in the same direction as the wave is moving
 - Sound
 - Slinky

Wave Properties

- Wavelength: The distance between identical points on the wave.
- Amplitude: The maximum displacement A of a point on the wave.

Wave Properties...

 Period: The time T for a point on the wave to undergo one complete oscillation.

 Speed: The wave moves one wavelength λ in one period T so its speed is $v = \lambda / T$.

Wave Properties... $V = \lambda / T$

 We will show that the speed of a wave is a constant that depends only on the medium, not on amplitude, wavelength or period

 λ and T are related!

•
$$\lambda = vT$$
 or $\lambda = 2\pi v/\omega$ (since $T = 2\pi/\omega$)

or $\lambda = v/f$ (since $T = 1/f$)

Recall f = cycles/sec or revolutions/sec

$$\omega = rad/sec = 2\pi f$$

Lecture 2/7

Right-hand rule for propagation

Phase shift of reflected radio waves

Diffraction around an object.

Longitudinal wave represented graphically by a transverse wave

Wave Motion

- The speed of sound in air is a bit over 300 m/s, and the speed of light in air is about 300,000,000 m/s.
- Suppose we make a sound wave and a light wave that both have a wavelength of 3 meters.
 - ←What is the ratio of the frequency of the light wave to that of the sound wave?

- (a) About 1,000,000
- (b) About .000,001
- (c) About 1000

Solution

• We have shown that $v = \lambda / T = \lambda f$ (since f = 1 / T)

So
$$f = \frac{V}{\lambda}$$

Since λ is the same in both cases, and $\frac{v_{light}}{v_{sound}} \cong 1,000,000$

$$\frac{V_{light}}{V_{sound}} \cong 1,000,000$$

$$\frac{f_{light}}{f_{sound}} \cong 1,000,000$$

Solution

What are these frequencies ???

For sound having
$$\lambda = 3m$$
: $f = \frac{v}{\lambda} \approx \frac{300 \, m/s}{3m} = 100 \, Hz$ (low humm)

For light having
$$\lambda = 3m$$
: $f = \frac{v}{\lambda} \approx \frac{3 \times 10^8 \, m/s}{3m} = 100 \, MHz$ (FM radio)

Wave Forms

 So far we have examined "continuous waves" that go on forever in each direction!

 We can also have "pulses" caused by a brief disturbance of the medium:

 And "pulse trains" which are somewhere in between.

Mathematical Description

• Suppose we have some function y = f(x):

 f(x-a) is just the same shape moved a distance a to the right:

 Let a=vt Then
 f(x-vt) will describe the same shape moving to the right with speed v.

Math...

 Consider a wave that is harmonic in x and has a wavelength of λ.

If the amplitude is maximum at x=0 this has the functional form:

 Now, if this is moving to the right with speed v it will be described by:

$$y(x,t) = A\cos\left(\frac{2\pi}{\lambda}(x-vt)\right)$$

Math...

 So we see that a simple harmonic wave moving with speed *v* in the *x* direction is described by the equation:

$$y(x,t) = A\cos\left(\frac{2\pi}{\lambda}(x-vt)\right)$$

• By using $v = \frac{\lambda}{T} = \frac{\lambda \omega}{2\pi}$ from before, and by defining $k = \frac{2\pi}{\lambda}$

$$k \equiv \frac{2\pi}{\lambda}$$

we can write this as:
$$y(x,t) = A \cos(kx - \omega t)$$

Math Summary

• The formula $y(x,t) = A \cos(kx - \omega t)$ describes a harmonic wave of amplitude A moving in the +x direction.

- Each point on the wave oscillates in the *y* direction with simple harmonic motion of angular frequency ω.
- The wavelength of the wave is $\lambda = \frac{2\pi}{k}$
- The speed of the wave is $V = \frac{\omega}{k}$
- The quantity *k* is often called "wave number".

Wave Motion

- A harmonic wave moving in the <u>positive x direction</u> can be described by the equation $y(x,t) = A \cos(kx \omega t)$
- Which of the following equation describes a harmonic wave moving in the <u>negative x direction</u>?

- (a) $y(x,t) = A \sin (kx \omega t)$
- (b) $y(x,t) = A \cos(kx + \omega t)$
- (c) $y(x,t) = A \cos(-kx + \omega t)$

• Recall $y(x,t) = A \cos(kx - \omega t)$ came from

$$y(x,t) = A\cos\left(\frac{2\pi}{\lambda}(x-vt)\right)$$

- The sign of the term containing the t determines the direction of propagation.
- We change the sign to change the direction:

$$y(x,t) = A \cos(kx - \omega t)$$
 moving toward + x
 $y(x,t) = A \cos(kx + \omega t)$ moving toward - x

Solution

• Recall $y(x,t) = A \cos(kx - \omega t)$ came from

$$y(x,t) = A\cos\left(\frac{2\pi}{\lambda}(x-vt)\right)$$

 Actually, it's the <u>relative</u> sign between the term containing the x and the term containing the v:

$$y(x,t) = A \cos(kx - \omega t)$$
 moving toward + x
 $y(x,t) = A \cos(-kx + \omega t) = A \cos(-(kx - \omega t))$
 $= A \cos(kx - \omega t)$ also moving toward + x

Standing Waves:

Transverse: $v = \lambda f$

Longitudinal: $v = \lambda f$

Longitudinal standing waves

Longitudinal standing waves (ex. antinodes at each end)

Pipes: 2 Types

Open Pipe (open on both ends)

$$\frac{\lambda_1 = 2L}{f_1 = v/2L}$$

Closed Pipe (one open, one closed end)

$$\begin{aligned} \lambda_1 &= 4L \\ \mathbf{f}_1 &= \mathbf{v}/4L \end{aligned}$$

Next highest frequencies

Open Pipe (open on both ends)

$$\frac{\lambda_2 = L}{f_2 = v/L} = 2f_1$$

Closed Pipe (one open, one closed end)

$$\lambda_3 = (4/3)L$$
 $f_3 = 3v/4L = 3f_1$

Which harmonics resonate?

- Ends are the same:
 - Multiples of f_1 : f_1 , $2f_1$, $3f_1$, $4f_1$...
- Ends are different:
 - Odd multiples of f_1 : f_1 , $3f_1$, $5f_1$, $7f_1$...

Both ends open:

anti-nodes at ends

One end open--one end closed:

anti-node at one end--node at the other

Standing Waves:

- Only happens at certain frequencies
 - Resonance phenomenon
 - Reflection and superposition of a wave
- NODES: points of zero vibration
- ANTINODES: points of maximum vibration

What is the wavelength?

Rule: Each lobe is half a wavelength; # lobes x $\lambda/2 = L$

What is the frequency?

$$f = v/\lambda$$

= $v/2L$

What is the wavelength?

Snapshot

$$3 \quad \lambda/2 = I$$

Rule: Each lobe is half a wavelength; # lobes x $\lambda/2 = L$

$$f = v/\lambda$$

= $\frac{v}{2/3 L} = 3v/2L = 3(v/2L) = 3f_1$

Conceptual RF and Microwave Fall 2002

ANL

What is the frequency of this mode?

advanced photon source

- A string stretched between 2 fixed supports sets up standing waves with 2 nodes between the ends when driven at 240 Hz.
- a. Draw a picture of the standing wave pattern.
- b. What is the fundamental frequency?
- c. At what frequency will the standing wave have 3 nodes (between ends)?

BEATS

BEATS:

 results from interference of two slightly different frequencies

$$f_{\text{beat}} = |f_2 - f_1|$$

Oscillations

Lecture Outline

- Qualitative descriptions:
 - LC circuits (ideal inductor)
 - LC circuits (L with finite R)
- Quantitative descriptions:
 - LC circuits (ideal inductor)
 - Frequency of oscillations
 - Energy conservation?
 - LC circuits (L with finite R)
 - Frequency of oscillations
 - Damping factor

First, a bit of an energy review...

Energy in the *Electric* Field

Work needed to add charge to capacitor...

Energy in the *Magnetic* Field

"Power" accounting in a LR circuit...

$$u_{\text{electric}} = \frac{1}{2} \varepsilon_0 E^2$$

Energy Density:

$$u_{\text{magnetic}} = \frac{1}{2} \frac{B^2}{\mu_0}$$

LC Circuits

 Consider the LC and RC series circuits shown:

- Suppose that the circuits
 are formed at
 t=0 with the capacitor C charged to a value Q. Claim
 is that there is a qualitative difference in the time
 development of the currents produced in these two
 cases. Why??
- Consider from point of view of energy!
 - In the RC circuit, any current developed will cause energy to be dissipated in the resistor.
 - In the LC circuit, there is NO mechanism for energy dissipation; energy can be stored both in the capacitor and the inductor!

RC: current decays exponentially

LC: current oscillates

LC Oscillations (qualitative)

LC Oscillations (L with finite R)

If L has finite R, energy will be dissipated in R and the oscillations will become damped.

$$R = 0$$

LC Oscillations (quantitative)

 What do we need to do to turn our qualitative knowledge into quantitative knowledge?

- What is the frequency ωof the oscillations (when R=0)?
- How does damping depend upon R?
- Does R change the frequency?

LC Oscillations (quantitative)

Begin with the loop rule:

$$L\frac{d^2Q}{dt^2} + \frac{Q}{C} = 0$$

Guess solution: (just harmonic oscillator!)

$$Q = Q_0 \cos(\omega_0 t + \phi)$$

remember: $-kx = m\frac{d^2x}{dt^2}$

where:

- \omega_0
 \determined from equation
- Procedure: differentiate above form for Q and substitute into loop equation to find ω₀.

LC Oscillations (quantitative)

General solution:

$$Q = Q_0 \cos(\omega_0 t + \phi)$$

Differentiate:

$$\frac{dQ}{dt} = -\omega_0 Q_0 \sin(\omega_0 t + \phi)$$

$$\frac{d^2Q}{dt^2} = -\omega_0^2Q_0\cos(\omega_0t + \phi)$$

$$L\frac{d^2Q}{dt^2} + \frac{Q}{C} = 0$$

• Substitute into loop eqn:

$$L\left(-\omega_0^2Q_0\cos(\omega_0t+\phi)\right) + \frac{1}{C}\left(Q_0\cos(\omega_0t+\phi)\right) = 0 \implies -\omega_0^2L + \frac{1}{C} = 0$$

$$\therefore \quad \boxed{\omega_0 = \frac{1}{\sqrt{LC}}}$$

which we could have determined

from the mass on a spring result:
$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{l/C}{L}} = \frac{l}{\sqrt{LC}}$$

LC Oscillations Energy Check

- Oscillation frequency $\omega_0 = \frac{1}{\sqrt{1 C}}$ has been found from the loop eqn.
- The other unknowns (Q_n,) are found from the initial conditions. eg in our original example we took as given, initial values for the charge (Q_i) and current (0). For these values: $Q_0 = Q_i$, $\phi = 0$.
- Question: Does this solution conserve energy?

$$U_E(t) = \frac{1}{2} \frac{Q^2(t)}{C} = \frac{1}{2C} Q_0^2 \cos^2(\omega_0 t + \phi)$$

$$U_{B}(t) = \frac{1}{2} Li^{2}(t) = \frac{1}{2} L\omega_{0}^{2} Q_{0}^{2} \sin^{2}(\omega_{0}t + \phi)$$

Energy Check

Energy in Capacitor

$$U_{E}(t) = \frac{1}{2C} Q_{0}^{2} \cos^{2}(\omega_{0}t + \phi)$$

Energy in Inductor

$$U_{B}(t) = \frac{1}{2} L \omega_{0}^{2} Q_{0}^{2} \sin^{2}(\omega_{0}t + \phi)$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 \bigcup

$$U_{B}(t) = \frac{1}{2C}Q_{0}^{2}\sin^{2}(\omega_{0}t + \phi)$$

Therefore,

$$U_{E}(t) + U_{B}(t) = \frac{Q_{0}^{2}}{2C}$$

